
1 | P a g e

NUMBERS AND STRINGS

NUMBERS

Python supports five basic numerical types, three of which are integer

types.

● int (signed integers)

 ❍ long (long integers)

 ❍ bool (Boolean values)

● float (floating point real numbers)

● complex (complex numbers)

❖ Numeric types of interest are the Python long and

complex types. Python long integers should not be

confused with C longs. Python longs have a capacity

that surpasses any C long. You are limited only by the

amount of (virtual) memory in your system as far as

range is concerned. If you are familiar with Java, a

Python long is similar to numbers of the Big Integer

class type.

❖ Moving forward, ints and longs are in the process of

becoming unified into a single integer type. Beginning

in version 2.3, overflow errors are no longer reported

the result is automagically converted to a long. In a

future version of Python, the distinction will be

seamless because the trailing "L" will no longer be used

or required.

❖ Boolean values are a special case of integer. Although

represented by the constants true and False, if put in a

numeric context such as addition with other numbers,

true is treated as the integer with value 1, and False has

a value of 0.

2 | P a g e

❖ Complex numbers (numbers that involve the square root

of -1, so-called "imaginary" numbers) are not supported

in many languages and perhaps are implemented only

as classes in others. There

is also a sixth numeric type, decimal, for decimal

floating numbers, but it is not a built-in type. You must

import the decimal module to use these types of

numbers. They were added to Python (version 2.4)

because of a need for more accuracy. For example, the

number 1.1 cannot be accurately representing with

binary floating point numbers (floats) because it has a

repeating fraction in binary. Because of this, numbers

like 1.1 look like this as a float

 >>> 1.1

 1.1000000000000001

 >>> print decimal.Decimal('1.1')

 1

STRINGS

Strings in Python are identified as a contiguous set of characters in

between quotation marks. Python allows for either pairs of single or

double quotes. Triple quotes (three consecutive single or double

quotes) can be used to escape special characters. Subsets of strings can

be taken using the index ([]) and slice ([:]) operators, which work

with indexes starting at 0 in the beginning of the string and working

their way from -1 at the end. The plus (+) sign is the string

concatenation operator, and the asterisk (*) is the repetition operator.

Here are some examples of strings and string usage:

 >>> pystr = 'Python'

 >>> iscool = 'is cool!'

 >>> pystr[0]

3 | P a g e

'P'

>>> pystr[2:5]

 'tho'

>>> iscool[:2]

 'is'

>>> iscool[3:]

'cool!'

>>> iscool[-1]

 '!'

>>> pystr + iscool

 'Pythonis cool!'

>>> pystr + ' ' + iscool

'Python is cool!'

>>> pystr * 2

'PythonPython' >

>> '-' * 20

 '--------------------'

>>> pystr = '''python

 ... is cool'''

 >>> pystr

'python\nis cool'

>>> print pystr

Python

 is cool >>>

